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Outline
• The objective of the Global Fitting is to interconnect the observing-spiral
rotation models to yield single spacecraft rotation model.
• This step is to establish a globally consistent reference frame for the po-
sition and proper motions, and a corresponding set of data for the satellite
attitude and geometric calibration of the instrument.
• This will be the most difficult stage in the reduction because of large num-
ber of parameters to be estimated simultaneously.
• The analysis tool is the weighted-least-square (WLS) fitting.
• A single WLS estimator is to yield all of the grid star parameters and all
of the instrument parameters.
• Input will be a set of spiral parameters from the S/C rotation model re-
sulted from the Spiral Reduction and some instrument parameters including
optics and CCD from the centroid step.
• Output will be astrometric (position, proper motion and parallax) param-
eters each grid star and rigid spiral parameters (3 Euler angles) each spiral.

Coordinate Systems to be used
1. Detector reference system, pixel coordinate (τ ,u,v)
2. Instrument ref. sys., (t,x,y,z)
3. Spacecraft(satellite) ref. sys. - (t,x,y,z)
4. ICRS, (T ,X,Y ,Z)
note: A reference to the celestial coordinates is eventually needed, but the
ecliptic coordinates (λ, β) will be a working celestial coordinate, and the
ecliptic is taken to be the fundamental plane.

Process
Observation Model→Observation Equation→ Build Design Matrix→ Solve
Parameters → Improve the precision by iteration

Observation Model
A description of the observations in terms of the unknown parameters and
other data. The instrument, attitude and astrometric models will be in-
cluded.
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Instrument Model

The point-spread function Pn varies with time, transverse pixel coordinate
(v) and the color index for given CCD number n. This will be given from
the centroid step.

The geometric instrument model specifies the relation between the Detector
RS (τ ,u,v) and the Instrument RS (t,x,y,z).

on-board time (τ) vs. S/C time (t)
For a given channel number n, an on-board time scale τun is to be associated
with each sample. (u is a along-scan pixel coordinate of the centroid.) The
corresponding time in the S/C ref. system, tun, is known by means of the
calibrated relation t(τ).

Field-to-Focal Plane Transformation
Let (ξ, η) be field angles. The mapping from the x-scan field angle to the
x-scan pixel coordinate is:

v = M(η)

where M may be a low-order polynomial.

The location of the fiducial line ξ

ξ = K(η) + ∆ξmn

where K may be a low-order polynomial, while ∆ξmn is the displacement of
pixel column m relative to the mean position.

The basic angle γ

cos γ = f−1 · f+1

where f+1 is the preceding field of view and f−1 the following field of view.

The instrument model is described by a number of parameters in Pn, M , K,
∆ξmn and γ. An assumption for the data analysis is that the instrument
changes are slow enough that the parameters can be calibrated as functions
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of time.

Attitude Model
The attitude specifies the orientation of the instrument axes connecting the
s/c ref. system to the ICRS. At any instant, the FAME orientation will be
given by three Euler angles (ϕ, ψ, θ) and these angles can be modeled as
continuous functions of time by means of polynomials, trigonometric func-
tions or splines.

Astrometric Model
For a single star, the vector X(T ) represents the position of the star at the
epoch of observation T , wrt to the solar system barycenter.

X(T ) = X0+Ẋ (T − T0)

where the position vector X0 = X(T0) of the star at the catalog epoch T0 wrt
the solar system barycenter. X(T0) and Ẋ are parameterized by the stan-
dard five astrometric parameters (α, δ, π, µα, µδ) and the radial velocity (VR).

Observation Equation
Expression of the difference between observed and calculated observation in
terms of different sources of error. This is a process to build design matrix.

Design Matrix
Suppose we have a system for FAME like,
F(x)+ε=b
where F=observation equation
ε=errors
b=N observable values
x=M parameters to fit

linearize for ith observation by

Fi(x) = Fi(x0) + ...
∑
j

∂Fi
∂xj

xj

let
∂Fi
∂xj

= Aij
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then, by a matrix form

Ax = b

where A, known as the design matrix of the LSQ problem, is a sparse matrix.

⇒ LSQ problem minimizing ||Ax− b||2 over x.

Solution Strategy

Solve the LSQ problem by the method of normal equations.
i.e., ATAx = AT b ⇒ Nx = y (ATA = N , AT b = y)

If the matrix N is symmetric, positive definite and constructed properly
⇒ block Cholesky decomposition: most efficient way to solve the normal eqn.

The first process will produce the design matrix selecting only the stars to
be included in the process by means of an initial quality star test, and also
prepare the data for the following iterations. The design matrix for the in-
strument parameters will be used to calculate astrometric parameters for
grid stars. The second will perform one iteration for each activation, test the
convergence of the process and, if a stopping criterion occurs, produce the
final results.

Initially two astrometric parameters (positions for each star) and rotation
parameters will be included and later five astrometric parameters will be cal-
culated. The covariance matrix of the LSQ will be off-diagonal portion.

Two different sets of variables will be used: one set represent star parameters
including the astrometric parameters and the other for non-star parameters
including the FAME attitude and instrument parameters. The normal ma-
trix of the system of equations is divided into four different parts NAA, NAB,
NBA and NBB such as∣∣∣∣∣ NAA NAB

NBA NBB

∣∣∣∣∣
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where A is a collection of coefficients for the astrometric parameters and B
is the coefficients for the non-star parameters. NAA is block diagonal with a
block size of at least 5 and NBB is block diagonal with a block size of number
of non-star parameters each spiral.
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